Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide

نویسندگان

  • Chao Liu
  • Xiaowei Wu
  • Timothy Klemmer
  • Nisha Shukla
  • Dieter Weller
  • PennsylVania
  • Anup G. Roy
  • Mihaela Tanase
  • David Laughlin
چکیده

FePt/iron oxide core/shell nanoparticles are synthesized by a two step polyol process with 1,2hexadecanediol as the reducing reagent. Monodispersed 2.6-nm FePt nanoparticles are first obtained by reduction of iron(III) acetylacetonate and platinum(II) acetylacetonate. These preformed FePt nanoparticles are then used as seeds and an iron oxide shell is formed in the second synthesis step. The role of the iron oxide shell on sintering of FePt nanoparticles is investigated. Annealing studies show that these FePt/ iron oxide core/shell structures are stable after annealing at 550 °C for 30 min at which 2.6-nm FePt nanoparticles without oxide shell coating start to sinter. Low-temperature magnetic hysteresis behavior of the annealed core/shell nanoparticles suggests exchange coupling between the magnetically hard FePt core and the magnetically soft iron oxide shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-step synthesis of FePt nanoparticles with tunable size.

A one-step synthesis of FePt nanoparticles is reported. The size, composition, and shape of the particles are controlled by varying the synthetic parameters such as molar ratio of stabilizers to metal precursor, addition sequence of the stabilizers and metal precursors, heating rate, heating temperature, and heating duration. An assembly of large (6 nm or greater) FePt nanoparticles, especially...

متن کامل

Synthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles

FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...

متن کامل

Synthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles

FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...

متن کامل

Sinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers.

Thermally robust monolayers of 4-6 nm diameter FePt nanoparticles (NPs) were fabricated by combining chemical synthesis and atomic layer deposition. Spin-cast monolayers of FePt NPs were coated with thin, 11 nm-thick layers of amorphous Al(2)O(3), followed by annealing to convert the FePt NPs from an alloy (A1) into intermetallic FePt (L1(0)) and FePt(3) (L1(2)) phases. The Al(2)O(3) layer serv...

متن کامل

Self-organised Fept Nanoparticle Arrays, Compacted Powders and Fept Nanoparticles Embedded on Sio2 Matrix

Monodispersed magnetic nanoparticles self-organised into superlattices onto a substrate are considered to be of real interest in the development of future magnetic storage systems due to their potential ultra-high storage density, higher than 1 Tbit/cm [1]. These particles are coated by organic acids as oleic acid which act as surfactant layer and avoid coalescence and prevent possible growth o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005